Continuity & IVT Practice

1. Use the graph to complete the table.
If a limit or function value does not exist, enter "DNE" in the table.

а	$\lim_{x \to a^{-}} f(x)$	$\lim_{x \to a^+} f(x)$	$\lim_{x \to a} f(x)$	f(a)
1				
2		N.		
3				
4				

2. Which value for "a" is the function continuous? Explain your answer using complete sentences.

The Intermediate Value Theorem and My Big Holiday Season of Overeating

The Intermediate Value Theorem does not claim to tell you *where* a function reaches a value or how many times. The theorem simply claims that every height a function reaches on a specific *x*-interval boundary will be the output at least once by some *x* within that interval.

(As is only guarantees the existence of something, it is called an existence theorem.)

Example:

Use the Intermediate Value Theorem to explain why the function $g(x) = x^2 + 3x - 6$ must have a root (x-intercept) on the closed interval [1, 2].

2007 AB Exam #3

The functions f and g are continuous for all real numbers, and g is strictly increasing. The table to the right gives values of the functions at selected values of x.

The function h is given by h(x) = f(g(x)) - 6.

х	f(x)	g(x)
1	6	2
2	9	3
3	10	4
4	-1	6

(a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.